Chemoselectivities in Acetalization, Thioacetalization, Oxathioacetalization and Azathioacetalization

Ram Kinkar Roy,*,† Priyanka Bagaria,† Sarala Naik,‡ Veerababurao Kavala,‡ and Bhisma K. Patel*,‡

Department of Chemistry, Birla Institute of Technology and Science (BITS), Pilani-333 031, Rajasthan, India, and Department of Chemistry, Indian Institute of Technology, Guwahati-781 039, India

Received: August 17, 2005; In Final Form: December 7, 2005

In the present article (experimental as well theoretical) the relative yields of cyclic (*O*,*O*), (*S*,*S*), (*S*,*O*), and (*S*,*N*) acetals, formed from *p*-(NO₂)C₆H₄CHO and *p*-(OH)C₆H₄CHO, are compared. Atomic charges, global electrophilicity descriptor (*w*) [as proposed by Parr et al., *J. Am. Chem. Soc.* **1999**, *121*, 1922] and hard–soft acid–base concept of Pearson (*J. Am. Chem. Soc.* **1963**, *85*, 3533) are used to explain the experimental observations. Although the *w* values can explain the yields, charge and local softness values of the interacting sites explain the plausible reaction mechanism. The bisnucleophiles chosen for acetalization are CH₂(OH)–CH₂(OH) (glycol), CH₂(SH)–CH₂(SH) (dithiol), CH₂(OH)–CH₂(SH) (oxathiol) and CH₂(SH)–CH₂(NH₂) (azathiol). For *p*-(NO₂)C₆H₄CHO, the experimental yield of cyclic acetals were found to follow the trend as (S,N) > (S,O) > (O,O) > (S,S), which is also supported by theoretical explanation based on the *w* values and applying the concept of hard–hard (i.e., charge-controlled) and soft–soft (i.e., orbital-controlled) interaction between the interacting sites of the substrates (i.e., aldehydes) and the reactants (bisnucleophiles). Similarly, for *p*-(OH)C₆H₄CHO the relative yields of cyclic acetals follow the trend (*S*,*N*) \approx (*S*,*O*) > (*O*,*O*). It is argued that the attack on C_{CHO} (i.e., C-atom of the CHO group) in *p*-(NO₂)C₆H₄CHO by O_{OH} (i.e., O-atom of OH group) or N_{NH₂} (i.e., N-atom of NH₂ group) is mainly charge-controlled but the attack on C_{CHO} in *p*-(OH)C₆H₄CHO) by S_{SH} (i.e., S-atom of SH group) is orbital-controlled.

1. Introduction

Recently, Patel and co-workers carried out experimental studies on the acetalization of benzaldehyde and substituted benzaldehydes.^{1,2} It was observed that the variation of yield depends on the types and positions of the substitutions. Subsequently, in a theoretical investigation Roy et al.³ showed that it is the global electrophilicity $(w)^4$ (of PhCHO and its different substitutions) that plays a dominant role in the process of acetalization. It is understood that steric factors also cause minor variations in experimental yields for some systems. In a competitive reaction environment, containing a mixture of p-(NO₂)C₆H₄CHO (p-nitrobenzaldehyde), p-(OH)C₆H₄CHO (phydroxybenzaldehyde), CH2OH-CH2OH (glycol) and CH2SH-CH₂SH (dithiol), the observed higher yield of cyclic acetal formed from p-(NO₂)C₆H₄CHO and of cyclic thioacetal formed from p-(OH)C₆H₄CHO, could also be explained on the basis of the difference of w values (between aldehydes and acetalizing agents).3

In the present study we have reported the yield of formation of cyclic (*O*,*O*), (*S*,*S*), (*S*,*O*) and (*S*,*N*) acetals formed from p-(NO₂)C₆H₄CHO and p-(OH)C₆H₄CHO. Relevant theoretical explanations are also provided on the basis of atomic charges, global electrophilicity (*w*) and local reactivity descriptors. The acetalizing agents used are CH₂OH-CH₂OH (glycol), CH₂SH-CH₂SH(dithiol), CH₂(OH)-CH₂(SH) (oxathiol), and CH₂(SH)-CH₂(NH₂) (azathiol). Experimental details are provided as Supporting Information. In section 2, a brief theoretical background of the reactivity descriptors along with their physical interpretation is provided. Methodologies used to compute the values of the reactivity indicators are described in section 3. The observed experimental yields of cyclic acetals are elaborated in different schemes in section 4, which are also backed by theoretical explanation. Finally, in the concluding section (section 5) we have summarized the overall study.

2A. Global Reactivity Descriptors

From a qualitative suggestion by Maynard et al.,⁵ Parr and co-workers⁴ have proposed a global electrophilicity descriptor as follows:

$$w = \frac{\mu^2}{2\eta} \tag{1}$$

Here, *w* is considered to be the electrophilic power of the concerned chemical species and bears the conceptual similarity to power of classical electricity (i.e., power = (V^2/R) , where *V* and *R* represent the potential difference and resistance, respectively). In eq 1, μ is the "chemical potential" and η is "global chemical hardness" of the concerned chemical species. The analytical and operational definitions of μ and η are given as follows,⁶

$$\mu = \left(\frac{\partial E}{\partial N}\right)_{\nu(\bar{r})} \cong -\frac{(\mathrm{IP} + \mathrm{EA})}{2} \tag{2}$$

$$\eta = \left(\frac{\partial^2 E}{\partial N^2}\right)_{\nu(\bar{\tau})} = (\mathrm{IP} - \mathrm{EA}) \tag{3}$$

^{*} Corresponding author. E-mail: rkoy2@rediffmail.com/patel@iitg.ernet.in.

[†] Birla Institute of Technology and Science (BITS).

[‡] Indian Institute of Technology.

The notations IP, EA, and $v(\bar{r})$, used in eqs 2 and 3, represent the first vertical ionization potential, first vertical electron affinity and the external potential (i.e., the potential due to the positions of the nuclei plus applied external field, if any) at position \bar{r} , respectively. In eq 2 and 3 the operational definitions of μ and η are derived by applying the finite difference approximation to the "total energy (*E*) vs total number of electron (*N*) plot" of any chemical system. Inverse of η is known as global softness "S" and is represented as

$$S = \frac{1}{\eta} \cong \frac{1}{(IP - EA)} \tag{4}$$

It should be noted here that eqs 3 and 4 represent the first analytical as well as operational definitions of chemical hardness and softness proposed qualitatively by Pearson much earlier.⁷ In last two decades a number of analytical studies are reported on hard—soft acid—base concept and most of them are based on reactivity descriptors derived from conceptual density functional theory.⁸

2B. Local Reactivity Descriptors

Parallel to the development of global reactivity descriptors some local reactivity descriptors were also proposed which have potential use in predicting local (or site) reactivity (selectivity) of a chemical species. One such descriptor is Fukui function index and is defined as⁹

$$f(\bar{\mathbf{r}}) = \left(\frac{\partial \rho(\bar{r})}{\partial N}\right)_{\nu(\bar{r})} = \left(\frac{\partial \mu}{\partial \nu(\bar{r})}\right)_N \tag{5}$$

Here, $\rho(\bar{r})$ represents the electron density at position \bar{r} of the chemical species. It is named so because of its conceptual similarity with Fukui's frontier molecular orbital theory.¹⁰ After taking care of the discontinuities in the $f(\bar{r})$ versus N plot, the "condensed to atom" approximations of $f(\bar{r})$, when multiplied by global softness (S), provide three condensed local softness values represented by¹¹

$$s_k^+(\bar{r}) = [p_k(N+1) - p_k(N)]S = f_k^+S$$
 (6a)

$$s_{\bar{k}}(\bar{r}) = [p_k(N) - p_k(N-1)]S = f_{\bar{k}}S$$
 (6b)

$$s_k^0(\bar{r}) = \frac{1}{2}[p_k(N+1) - p_k(N-1)]S = f_k^0S$$
 (6c)

Here, $p_k(N)$, $p_k(N + 1)$ and $p_k(N - 1)$ represent the condensed electronic populations on atom "k" for neutral, anionic and cationic systems, respectively. So, s_k^+ , s_k^- , and s_k^0 represent the condensed local softness values¹² of atom "k" toward nucleophilic, electrophilic, and radical attack on it, respectively. Thus, in a molecule the atom "k", for which s_k^+ value is highest, is the most preferred atom to be attacked by a nucleophile. Similarly, highest values of s_k^- and s_k^0 for any atom "k" indicate it to be the most preferable atom for electrophilic and radical attack. We could come to eqs 6a-c because of following analytical relations,

$$s(\bar{r}) = \left(\frac{\partial\rho(\bar{r})}{\partial\mu}\right)_{\nu(\bar{r})} = \left(\frac{\partial\rho(\bar{r})}{\partial N}\right)_{\nu(\bar{r})} \left(\frac{\partial N}{\partial\mu}\right)_{\nu(\bar{r})} = f(\bar{r})S \qquad (7)$$

Equations 6a-c can be represented by a generalized expression as follows,

$$s_k^{\alpha} = f_k^{\alpha} S \tag{8}$$

Here, α is +, -, and 0.

3. Computational Details

To investigate chemoselectivities in the process of acetalization, thioacetalization, oxathioacetalization and azathioacetalization we have chosen in total 6 chemical systems as described in section 1. Out of these six systems two are aldehydes, i.e., p-(NO₂)C₆H₄CHO and p-(OH)C₆H₄CHO. The other four are CH₂OH-CH₂OH (glycol), CH₂SH-CH₂SH(dithiol), CH₂(OH)-CH₂(SH) (oxathiol) and CH₂(SH)-CH₂(NH₂) (azathiol). The different reaction combinations, as described in the Supporting Information, are designed to single out the nature of chemoselectivity. The obtained yields and the relevant theoretical explanations are elaborated scheme-wise in the next section (section 4).

The geometries were initially optimized at the semiempirical level using CHEM-3D program,¹³ followed by re-optimization at the RHF/6-31G(D,P) level using Gaussian-98.¹⁴ In another set of calculations the geometries are re-optimized at BLYP/ dnp level using DMOL³ program package.¹⁵ The "dnp" level basis set is of double-numeric quality (i.e., approximately two atomic orbitals for each one occupied in the free atom) augmented with polarization functions (i.e., functions with angular momentum one higher than that of the highest occupied orbital in the free atom). The "dnp" basis set is as included in DMOL³ program package. It is already known that numerical basis sets of the same size.¹⁵

The global electrophilicity values were evaluated by using eq 1 and the operational forms of μ and η are as in eqs 2 and 3, respectively. The local softness values of the individual atoms (i.e., s_k^{α}) are computed through eqs 6a and 6b, in which S comes from eq 4. The charge values were evaluated by Hirshfeld population analysis (HPA)¹⁶ using DMOL³ program and by Mulliken population analysis (MPA)¹⁷ using Gaussian program. Conceptual advantage of HPA over that of MPA is discussed in details in refs 18-22. There are several other studies that have rigorously shown the superiority of HPA over other population analysis schemes.²³ Although it should also be noted here that Bultinck and Carbo will not fully agree to the above view because of their recent observations on the poor show of HPA in some cases.²⁴ To enhance the reliability, the MPA based charges are extracted by using a new technique adopted by Roy.²¹ In this new technique the charges on the H-atoms are summed on the heavy atoms (i.e., C, O, S and N atoms here) to which they are bonded. The charge values evaluated in this way are found to take care of the artifact of charge partitioning in MPA to some extent and thus is more reliable compared to the normal "condensed-to-individual atom" way.11

4. Results and Discussion

As mentioned in section 3, the obtained yields and the relevant explanations are given in the schemes. In Table 1 we have reported the values of q_k (charge), s_k^+ and s_k^- of the relevant atoms. The global electrophilicity (*w*) values are reported in Table 2. What we observe in Table 1 is that the s_k^+ value of C_{CHO} in *p*-(OH)C₆H₄CHO is higher than that of C_{CHO} in *p*-(NO₂)C₆H₄CHO, although the latter has a higher value of *w* than that of the former (Table 2). This is just another evidence in favor of the claim by Roy et al.²⁵ that the trends of global and local (of the strongest atoms in the chemical systems compared) electrophilicities are not always same. It is also clear from Table 1 that the charge values (q_k) of C_{CHO} in *p*-(OH)-C₆H₄CHO is lower than that of C_{CHO} in *p*-(NO₂)C₆H₄CHO, which is also expected because of the electron withdrawing

TABLE 1: MPA and HPA Based Charges (i.e., q_k), s_k^+ , and s_k^- Values of the Atoms (Marked *) Relevant in the Present Study (See Text)^{*a*}

	methods					
	MPA/6-31G(D,P)			HPA/dnp		
carbonyl systems	q_k	s_k^+	s_k^-	q_k	s_k^+	s_k^-
p-NO ₂ C ₆ H ₄ C*HO	0.5276	0.2696	0.1780	0.1192	0.2934	0.2099
p-OHC ₆ H ₄ C*HO	0.5099	0.7988	0.1653	0.1024	0.3242	0.2233
CH ₂ S*H-CH ₂ S*H	0.0459	0.9043	0.9432	-0.0530	0.6512	0.9077
CH2O*H-CH2O*H	-0.3121	0.6130	0.4728	-0.2315	0.2144	0.4798
CH ₂ O*H-CH ₂ SH	-0.2974	0.0904	0.0878	-0.2308	0.1749	0.4408
CH ₂ OH-CH ₂ S*H	0.0171	1.5737	1.6644	-0.0480	0.7467	0.9261
CH ₂ S*H-CH ₂ NH ₂	0.0211	1.5699	1.7004	-0.0658	0.6649	0.9398
CH ₂ SH-CH ₂ N*H ₂	-0.1672	0.1866	0.1770	-0.2197	0.2098	0.4758

^{*a*} The s_k^+ and s_k^- values are in atomic units.

TABLE 2: MPA and HPA Based Global Electrophilicity (i.e., w) Values of the Chemical Systems Chosen for Comparison of Competitive Acetalization, Thioacetalization, Oxathioacetalization and Azathioacetalization in the Present Study (See Text)^{*a*}

	methods		
chemical systems	MPA/6-31G(D,P)	HPA/dnp	
p-NO ₂ C ₆ H ₄ CHO	0.0404	0.0606	
<i>p</i> -OHC ₆ H ₄ CHO	0.01735	0.0349	
CH ₂ SH-CH ₂ CH	0.0103	0.02085	
CH ₂ OH-CH ₂ OH	0.00745	0.01905	
CH ₂ OH-CH ₂ SH	0.00715	0.01895	
CH ₂ SH-CH ₂ NH ₂	0.0057	0.0167	

^a The values are in atomic units.

effect of the -NO2 group present in the latter system. The apparent contradictory trends in s_k^+ and q_k values of C_{CHO} have their effect on the reactivity of the two systems. The higher values of charge (of C_{CHO}) as well as global electrophilicity (i.e., w) of p-(NO₂)C₆H₄CHO indicate that it will be preferred by a charged but hard (i.e., small sized) nucleophile (to react on C_{CHO}) from a distance at the initial stage of the reaction. This is some kind of hard-hard interaction which is charge controlled.^{26–28} But the higher s_k^+ value of the C_{CHO} in *p*-(OH)-C₆H₄CHO will favor (at least to some extent) the reaction with the uncharged (or less negatively charged) but soft (i.e., large sized) nucleophile in the later stage of the reaction. This can be considered as soft-soft interaction, which is mainly orbital controlled²⁶ and operates at closer approach. However, it is worth mentioning here that the overall yield of the reaction will depend on the electrophiles as well as the nucleophiles involved.

We also notice from Table 1 that the s_k^+ value of C_{CHO} in p-(OH)C₆H₄CHO is too high to that of the s_k^+ value of C_{CHO} in p-(NO₂)C₆H₄CHO when evaluated by MPA/6-31G(D,P) method. There is no physical justification in favor of so much difference in the s_k^+ values of C_{CHO} in the two systems and this, probably, can be attributed to the artifact involved in the MPA charge-partitioning scheme. We, therefore, trust more on the s_k^+ values generated by HPA/dnp method.

On the basis of the discussion above, we have given explanations of the obtained yields in the schemes.

The higher positive charge on C_{CHO} in p-(NO₂)C₆H₄CHO [than on C_{CHO} in p-(OH)C₆H₄CHO] and high negative charge on O_{OH} (in CH₂OH-CH₂OH) makes the charge-controlled hard-hard interaction very effective. The hard-hard interaction between C_{CHO} [in p-(OH)C₆H₄CHO] and O_{OH} (in CH₂OH-CH₂OH) is not that effective because of lower positive charge on C_{CHO} in the former (this will be particularly true when a

SCHEME 1: Experiment 1 in the Supporting Information

competitor like p-(NO₂)C₆H₄CHO is already there in the reaction medium). Also, the difference of global electrophilicity between p-(NO₂)C₆H₄CHO and CH₂OH-CH₂OH is significantly higher than that between p-(OH)C₆H₄CHO and CH₂OH-CH₂OH. These two factors favor the (*O*,*O*) acetal formation of p-(NO₂)C₆H₄CHO (Scheme 1). It seems that the higher s_k^+ value of C_{CHO} in p-(OH)C₆H₄CHO (by HPA/dnp method) has no influence on the yield.

SCHEME 2: Experiment 2 in the Supporting Information

Here, because of large size and negligible negative charges (in HPA/dnp method), *S*-atoms in CH₂SH-CH₂SH behave like soft bases. So, the interaction of C_{CHO} (having comparatively lower positive charge on it) in *p*-(OH)C₆H₄CHO with S_{SH} (in CH₂SH-CH₂SH) is mainly orbital controlled and soft-soft in nature . On the contrary, comparatively higher positive charge on C_{CHO} of *p*-(NO₂)C₆H₄CHO makes the soft-soft interaction with CH₂SH-CH₂SH less effective. Thus, the major product is expected cyclic (*S*,*S*) acetal of *p*-(OH)C₆H₄CHO.

SCHEME 3: Experiment 3 in the Supporting Information

Here, because of the competitive reaction condition p-(NO₂)-C₆H₄CHO will form (*O*,*O*) acetal with CH₂OH–CH₂OH and p-(OH)C₆H₄CHO will form (*S*,*S*) acetal with CH₂SH–CH₂SH. The reason is that the highest global electrophilicity of p-(NO₂)C₆H₄CHO plus higher positive charge of C_{CHO} will favor it to react with the lowest electrophilic (i.e., the strongest nucleophilic) CH₂OH–CH₂OH (which has also higher negative charge on the O_{OH}-atoms) in a charge-controlled hard–hard way. Similarly, p-(OH)C₆H₄CHO will react with CH₂SH–CH₂SH in an orbital-controlled soft–soft pathway (see the explanations in Schemes 1 and 2 above).

SCHEME 4: Experiment 4 in the Supporting Information

As per explanations in the previous schemes it is expected that the initial attack by O_{OH} (in CH₂SH–CH₂OH) to the deactivated carbonyl group (i.e., C_{CHO}) of *p*-(NO₂)C₆H₄CHO will take place in the first step (which is charge-controlled). This is then followed by an intramolecular nucleophilic attack by the S_{SH} on the oxycarbenium ion as shown in Figure 1.

Here as both the first and third steps are energetically favorable, the yield of (S,O) acetal of p-(NO₂)C₆H₄CHO is higher. The probable reaction mechanism shown above is also consistent with the product distribution in Schemes 1 and 3. Also, it has been experimentally found that (O,O) acetal can easily be converted to (S,O) acetal (because third step is energetically more favorable in case of transthio-acetalization process, as S_{SH} is a better nucleophile than O_{OH}).

On the other hand S_{SH} is attacking first to the carbonyl group (i.e., C_{CHO}) of the *p*-(OH)C₆H₄CHO followed by an intramolecular attack of O_{OH} as shown in Figure 2.

In Figure 2 the first step is energetically favorable (and is assumed to be predominantly orbital-controlled) as has been observed in Schemes 2 and 3. But the third step, i.e., the attack of O_{OH} to an electron rich thiocarbenium moiety is not favorable and we believe it to be the rate-determining step.

Now, because the rate-determining step in case of oxathioacetal [i.e., (*S*,*O*) acetal] formation of p-(NO₂)C₆H₄CHO (the first step in Figure 1) is energetically favorable to that of the rate-determining step in case of p-(OH)C₆H₄CHO (third step in Figure 2), the yield of (*S*,*O*) acetal formation in case of the former is higher than that of the latter (Scheme 4). Higher global electrophilicity of p-(NO₂)C₆H₄CHO also favors the oxathioacetal formation.

SCHEME 5: Experiment 5 in the Supporting Information

Explanation in favor of the higher yield of azathioacetalization of p-(NO₂)C₆H₄CHO is similar to Scheme 4. The probable reaction mechanism for (*N*,*S*) acetal formation of p-(NO₂)C₆H₄-CHO is shown in Figure 3.

Here the first step is the rate-determining step. The probable mechanism of (N,S) acetal formation of p-(OH)C₆H₄CHO is similar to the corresponding mechanism in Scheme 4 (Figure 2). Because, the rate-determining step in the formation of (N,S) acetal of p-(OH)C₆H₄CHO is energetically less favorable when compared to that of p-(NO₂)C₆H₄CHO and also the fact that the latter is a stronger electrophile than the former, the yield follows the above trend.

Figure 1. Mechanism I.

Figure 2. Mechanism II.

Figure 3. Mechanism III.

SCHEME 6: Experiment 6 in the Supporting Information

The obtained yields can be explained in the same line of arguments as in Scheme 3. The C_{CHO} of p-(NO₂)C₆H₄CHO will be attacked first by O_{OH} of CH₂OH-CH₂SH in a predominantly charge-controlled pathway (Figure 1 in Scheme 4.). The reaction of p-(OH)C₆H₄CHO with CH₂SH-CH₂SH is mainly orbital-controlled.

Here (Scheme 7) the explanation is similar to Scheme 6. The N_{NH_2} of $CH_2SH-CH_2NH_2$ will attack the C_{CHO} of p-(NO₂)C₆H₄-CHO in a predominantly charge-controlled pathway. The reaction between p-(OH)C₆H₄CHO and CH₂SH-CH₂SH is, as usual, predominantly orbital-controlled.

A careful look at the yield of (S,O) and (S,N) acetals of p-(NO₂)C₆H₄CHO in Schemes 4–7 makes it obvious that the yields of (S,N) acetals are higher than that of (S,O) acetals. A plausible explanation may be the higher difference of global electrophilicity between p-(NO₂)C₆H₄CHO and CH₂SH–CH₂-

SCHEME 7: Experiment 7 in the Supporting Information

NH₂ than that of p-(NO₂)C₆H₄CHO and CH₂SH-CH₂OH (which indicates that CH₂SH-CH₂NH₂ is a stronger nucleophile than CH₂SH-CH₂OH). Also a higher s_k^- value of N_{NH₂} in CH₂SH-CH₂NH₂ than that of O_{OH} in CH₂SH-CH₂OH makes the rate-determining step energetically more favorable in case of the former. Thus for p-(NO₂)C₆H₄CHO the preferential attack by the nucleophiles to the C_{CHO} follows the trend, N_{NH₂} > O_{OH} > S_{SH}. This trend is further evidenced from the series of competitive reactions as shown in Scheme 8 below.

SCHEME 8: Experiments 8–13 in the Supporting Information

Instead of explaining the yields of the reactions individually a general approach seems to be more convincing. The trends of the yields of (O,O), (S,S), (S,O), (S,N) acetals, as shown above, could be explained on the basis of two considerations: (i) The attack on C_{CHO} of *p*-(NO₂)C₆H₄CHO by O_{OH} and N_{NH2} nucleophiles is predominantly charge-controlled because of the high positive charge on C_{CHO} and negative charges on O_{OH} and N_{NH2}. As S_{SH} has negligible negative charge on it, the attack on C_{CHO} by S_{SH} is much less effective either as charge-controlled or as orbital-controlled pathway. (ii) The difference of global electrophilicity (*w*) between *p*-(NO₂)C₆H₄CHO and the nucleophiles. The more is the difference the better is the yield because lower is the *w* value stronger is the nucleophile.

Thus, in the present study we see the yield of formation of different cyclic acetals from p-(NO₂)C₆H₄CHO follow the trend as below:

SCHEME 9: Experiments 14–16 in the Supporting Information

As discussed in Schemes 2 and 3, the formation of (S,S) acetal is preferred over (O,O) acetal because of favorable orbitalcontrolled reaction between p-(OH)C₆H₄CHO and CH₂SH– CH₂SH, which is not the case when the nucleophile is CH₂OH– CH₂OH. Similarly, formation of (S,O) acetal is preferred over (O,O) acetal because of the favorable orbital-controlled attack of S_{SH} on the C_{CHO} of p-(OH)C₆H₄CHO (Figure 2, Scheme 4). Again, the yield of (S,S) acetal is much higher than that of (S,O)acetal because the third step of Figure 2 will be energetically more favorable in case of CH₂SH–CH₂SH as S_{SH} is a better electron donor (to the thiocarbenium ion) than O_{OH}.

The explanation for the higher yield of (S,N) acetal over those of (O,O) and (S,O) acetals (Scheme 10) is similar to that of Scheme 9. Here also orbital-controlled attack on C_{CHO} by S_{SH} takes place in the first step when the nucleophiles are CH₂SH-CH₂NH₂ and CH₂SH-CH₂OH. This step is not favorable when the nucleophile is CH₂OH-CH₂OH. The third step will be energetically more favorable when the nucleophile at the other end is N_{NH₂} (than when it is O_{OH}) because N_{NH₂} is a better nucleophile than O_{OH}. However, the slightly higher yield of

SCHEME 10: Experiments 17–19 in the Supporting Information

(S,N) acetal than that of (S,S) acetal is not clearly understood because the yield of the latter is expected to be more. Maybe the difference of *w* values between *p*-(OH)C₆H₄CHO and nucleophiles (which is more when the nucleophile is CH₂SH– CH₂NH₂; see Table 2) plays a role here. But the results seem to be not that erratic when we consider ±5% error in the experimental procedure of evaluation of yield.

Thus the yields of different acetals obtained from p-(OH)-C₆H₄CHO follow the trend as

5. Conclusion

The present article represents a combined study (experimental as well as theoretical) of chemoselectivities involved in the acetalization, thioacetalization, oxathioacetalization and azathioacetalization of p-(NO₂)C₆H₄CHO and p-(OH)C₆H₄CHO. The main objective is to investigate the trends of cyclic (*O*,*O*), (*S*,*S*), (*S*,*O*) and (*S*,*N*) acetal formation with the variation of substitution on the Ph ring of C₆H₅CHO. The obtained yields of the products suggest that for p-(NO₂)C₆H₄CHO the order follows

whereas for p-(OH)C₆H₄CHO the trend is

The above yields could be explained theoretically upon consideration of a multiple of factors together:

(i) global electrophilicity difference between the electrophiles [i.e., p-(NO₂)C₆H₄CHO and p-(OH)C₆H₄CHO] and the nucleo-

philes [i.e., CH₂OH-CH₂OH, CH₂SH-CH₂SH, CH₂(OH)-CH₂(SH), and CH₂(SH)-CH₂(NH₂)]

(ii) type of attack on the most electrophilic atom (i.e., C_{CHO}) by the most nucleophilic atoms (i.e., O_{OH} , S_{SH} and N_{NH_2}) [This helps us to understand whether the attack is charge-controlled or orbital-controlled.]

(iii) energetics at the different stages of the reaction

Unambiguous preference of p-(NO₂)C₆H₄CHO for CH₂OH-CH₂OH and that of p-(OH)C₆H₄CHO for CH₂SH-CH₂SH (Schemes 1-3, 6, 7, 9 and some reactions in Schemes 8 and 10) clearly shows that only global electrophilicity (w) difference between the electrophiles and the nucleophiles is not sufficient to explain the observed yields. Had it been so, we would have expected higher yield of (S,S) acetal product from p-(NO₂)C₆H₄-CHO than that from p-(OH)C₆H₄CHO, owing to the higher difference of the global electrophilicity values between p-(NO₂)C₆H₄CHO and CH₂SH-CH₂SH (See Table 2). On the contrary, the reaction in Scheme 4 clearly suggests the high preference of O_{OH} (in CH₂OH-CH₂OH) toward C_{CHO} in p-(NO₂)C₆H₄CHO and that of S_{SH} (in CH₂SH-CH₂SH) toward C_{CHO} in p-(OH)C₆H₄CHO. These evidences led us to invoke the long known concept of charge-controlled attack in the former and orbital-controlled attack in the latter case.²⁶ The above assumption is also justified because of the high negative charge on OOH (in CH2OH-CH2OH) but almost neutral SSH (in CH2-SH-CH₂SH). In reactions where the involved nucleophiles have different groups at the two ends (e.g., CH₂OH-CH₂SH and CH₂-SH-CH₂NH₂) the observed yields could be explained by giving preference to that type of attack which leads to energetically more favorable transition state in the rate-determining step (e.g., reactions in Schemes 4 and 5 and last reactions in Schemes 8 and 10). In such cases also the reactions are assumed to be initiated by the attack of OOH or NNH2 to the CCHO of p-(NO₂)C₆H₄CHO and by S_{SH} to the C_{CHO} of p-(OH)C₆H₄CHO.

We emphasize here that an energetic study, which includes the evaluation of activation energy in the rate-determining step, is not warranted in the present case. This is because activation energy provides an account of the stability of the transition state (with respect to the reactants), which can be considered as "the effect" of the phenomena involved in the process of chemical reaction. We are here to find out "the cause", rather than "the effect" (as the reaction yields obtained in the experimental study serve that purpose), which influences the stability of the transition state. Although, in general, both the steric and electronic factors contribute to the stability of the transition state, the contribution of the former is negligible in the present study as in both the substrates $[p-(NO_2)C_6H_4CHO \text{ and } p-(OH)C_6H_4-$ CHO] the substituted groups $(-NO_2, -OH \text{ and } -CHO)$ are in para-position. Thus, it seems to be physically meaningful to assume that electronic factors are the sole contributors to the stability of the transition state (and thus control the reactivity) that influences the yields of the reactions studied here. This is exactly what is considered in the present study.

Acknowledgment. R.K.R. acknowledges the support of this research to DST, Government of India, New Delhi, and is also grateful to the Chemistry Group, Birla Institute of Technology and Science (BITS), Pilani, for providing some computational facilities. P.B. acknowledges financial support from Birla Institute of Technology and Science (BITS), Pilani, in the form of institute fellowship. V.K. and S.N. acknowledge financial support from IIT, Guwahati. B.K.P. is grateful to DST, New Delhi, and CSIR (01/1946/04/EMR-II), India, for financial support.

Supporting Information Available: Experimental details. This material is available free of charges via the Internet at http://pubs.acs.org.

References and Notes

(1) Gopinath, R.; Haque, Sk. J.; Patel, B. K. J. Org. Chem. 2002, 67, 5842.

(2) Naik, S.; Gopinath, R.; Goswami, M.; Patel, B. K. Org. Biomol. Chem. 2004, 2, 1670.

(3) Roy, R. K.; Usha, V.; Patel, B. K.; Hirao, K. J. Comp. Chem., in press.
(4) Parr, R. G.; von Szentpaly, L.; Liu, S. J. Am. Chem. Soc. 1999,

(4) Fail, K. G., Volt Szenipary, E., Eld, S. J. Am. Chem. Soc. 1999, 121, 1922.

(5) Maynard, A. T.; Huang, M.; Rice, W. G.; Covel, D. G. Proc. Natl. Acad. Sci. U.S.A. **1998**, 95, 11578.

(6) Parr, R. G.; Pearson, R. G. J. Am. Chem. Soc. 1983, 105, 7512.
(7) Pearson, R. G. J. Am. Chem. Soc. 1963, 85, 3533. Pearson, R. G. Science 1966, 151, 172. Pearson, R. G. Chem. Br. 1967, 3, 103.

(8) Chattaraj, P. K.; Lee, H.; Parr, R. G. J. Am. Chem. Soc. 1991, 113,
 (8) Chattaraj, P. K.; Lee, H.; Parr, R. G. J. Am. Chem. Soc. 1991, 113,
 (1855. Ayers, P. W. J. Chem. Phys. 2005, 122, 141102. Chattaraj, P. K. and
 Ayers, P. W. J. Chem. Phys. 2005, 123, 086101. Geerlings, P.; de-Proft,

F; Langenaeker, W. Chem. Rev. 2003, 103, 1793–1883. Pal, S; Chandrakumar, K. R. S. J. Am. Chem. Soc. 2000, 122, 4145. Chandrakumar, K.

R. S.; Pal, S. J. Phys. Chem. A 2002, 106, 5737.

(9) Parr, R. G.; Yang, W. J. Am. Chem. Soc. 1984, 106, 4049.

(10) Fukui, K.; Yonezawa, T.; Shingu, H. J. Chem. Phys. **1952**, 20, 722. Fukui, K.; Yonezawa, T.; Nagata, C.; Shingu, H. J. Chem. Phys. **1954**, 22, 1433.

(11) Yang, W.; Mortier, W. J. J. Am. Chem. Soc. 1986, 108, 5708.

(12) Ghosh, S. K.; Berkowitz, M. J. Chem. Phys. 1985, 83, 2976. Yang, W.; Parr, R. G. Proc. Natl. Acad. Sci. U.S.A. 1985, 82, 6723.

(13) 1986-1999, Cambridge Soft Corporation.

(14) Frisch, M. J.; Trucks, G. W.; Schlegel, Scuseria, G. E.; Robb, M. A.; Cheeseman, J. R.; Zakrzewski, V. G.; Montgomery, J. A., Jr.; Stratmann,

R. E.; Burant, J. C.; Dapprich, S.; Millam, J. M.; Daniels, A. D.; Kudin, K. N.; Strain, M. C.; Farkas, O.; Tomasi, J.; Barone, V.; Cossi, M.; Cammi, R.; Mennucci, B.; Pomelli, C.; Adamo, C.; Clifford, S.; Ochterski, J.; Petersson, G. A.; Ayala, P. Y.; Cui, Q.; Morokuma, K.; Malick, D. K.; Rabuck, A. D.; Raghavachari, K.; Foresman, J. B.; Cioslowski, J.; Ortiz, J. V.; Baboul, A. G.; Stefanov, B. B.; Liu, G.; Liashenko, A.; Piskorz, P.; Komaromi, I.; Gomperts, R.; Martin, R. L.; Fox, D. J.; Keith, T.; Al-Laham, M. A.; Peng, C. Y.; Nanayakkara, A.; Challacombe, M.; Gill, P. M. W.; Johnson, B.; Chen, W.; Wong, M. W.; Andres, J. L.; Gonzalez, C.; Head-Gordon, M.; Replogle, E. S.; Pople, J. A. *Gaussian 98*, revision A.9; Gaussian, Inc.: Pittsburgh, PA, 1998.

(15) DMol³, Version 970818, Accelrys, San Diego, CA.

(16) Hirshfeld, F. L. Theor. Chim. Acta 1977, 44, 129.

(17) Mulliken, R. S. J. Chem. Phys. 1955, 23, 1833.

(18) Roy, R. K.; Pal, S.; Hirao, K.J. Chem. Phys. 1999, 110, 8236.

(19) Roy, R. K.; Hirao, K.; Pal, S. J. Chem. Phys. 2000, 113, 1372.

(20) Roy, R. K.; Tajima, N.; Hirao, K. J. Phys. Chem. 2001, 105, 211.

(21) Roy, R. K. J. Phys. Chem A 2003, 107, 397.

(22) Roy, R. K. J. Phys. Chem A 2003, 107, 10428.

(23) Ayers, P. W.; Morrison, R. C.; Roy, R. K. J. Chem. Phys. 2002, 116, 8731. Nalewajaski, R. F.; Parr, R. G. Proc. Natl. Acad. Sci. U.S.A. 2000, 97, 8879. Nalewajaski, R. F.; Parr, R. G. J. Phys. Chem. A 2001, 105, 7391. Parr, R. G.; Ayers, P. W.; Nalewajaski, R. F. J. Phys. Chem. A 2005, 109, 3957.

(24) Bultinck, P.; Ponec, R.; Van Damme, S. J. Phys. Org. Chem. 2005, 18, 706. Carbo-Dorca, R. J. Math. Chem. 2004, 36, 201. Carbo-Dorca, R.; Bultinck, P. J. Math. Chem. 2004, 36, 231.

(25) Roy, R. K.; Usha, V.; Pauloviè, J.; Hirao, K. J. Phys. Chem. 2005, 109, 4601.

(26) Klopman, G. J. Am. Chem. Soc. 1964, 86, 1463. Klopman, G. J. Am. Chem. Soc. 1968, 90, 223.

(27) Langenaeker, W.; de Proft, F.; Geerlings, P. J. Phys. Chem. 1995, 99, 6424.

(28) Roy, R. K.; Krishnamurti, S.; Geerlings, P.; Pal, S. J. Phys. Chem. A **1998**, 102, 3746.